* Step 1: DependencyPairs WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            first(0(),X) -> nil()
            first(s(X),cons(Y)) -> cons(Y)
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(X))) -> s(half(X))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            terms(N) -> cons(recip(sqr(N)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1} / {0/0,cons/1,nil/0,recip/1,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add,dbl,first,half,sqr,terms} and constructors {0,cons
            ,nil,recip,s}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          add#(0(),X) -> c_1()
          add#(s(X),Y) -> c_2(add#(X,Y))
          dbl#(0()) -> c_3()
          dbl#(s(X)) -> c_4(dbl#(X))
          first#(0(),X) -> c_5()
          first#(s(X),cons(Y)) -> c_6()
          half#(0()) -> c_7()
          half#(s(0())) -> c_8()
          half#(s(s(X))) -> c_9(half#(X))
          sqr#(0()) -> c_10()
          sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
          terms#(N) -> c_12(sqr#(N))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            add#(0(),X) -> c_1()
            add#(s(X),Y) -> c_2(add#(X,Y))
            dbl#(0()) -> c_3()
            dbl#(s(X)) -> c_4(dbl#(X))
            first#(0(),X) -> c_5()
            first#(s(X),cons(Y)) -> c_6()
            half#(0()) -> c_7()
            half#(s(0())) -> c_8()
            half#(s(s(X))) -> c_9(half#(X))
            sqr#(0()) -> c_10()
            sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
            terms#(N) -> c_12(sqr#(N))
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            first(0(),X) -> nil()
            first(s(X),cons(Y)) -> cons(Y)
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(X))) -> s(half(X))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            terms(N) -> cons(recip(sqr(N)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/3,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          add(0(),X) -> X
          add(s(X),Y) -> s(add(X,Y))
          dbl(0()) -> 0()
          dbl(s(X)) -> s(s(dbl(X)))
          sqr(0()) -> 0()
          sqr(s(X)) -> s(add(sqr(X),dbl(X)))
          add#(0(),X) -> c_1()
          add#(s(X),Y) -> c_2(add#(X,Y))
          dbl#(0()) -> c_3()
          dbl#(s(X)) -> c_4(dbl#(X))
          first#(0(),X) -> c_5()
          first#(s(X),cons(Y)) -> c_6()
          half#(0()) -> c_7()
          half#(s(0())) -> c_8()
          half#(s(s(X))) -> c_9(half#(X))
          sqr#(0()) -> c_10()
          sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
          terms#(N) -> c_12(sqr#(N))
* Step 3: PredecessorEstimation WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            add#(0(),X) -> c_1()
            add#(s(X),Y) -> c_2(add#(X,Y))
            dbl#(0()) -> c_3()
            dbl#(s(X)) -> c_4(dbl#(X))
            first#(0(),X) -> c_5()
            first#(s(X),cons(Y)) -> c_6()
            half#(0()) -> c_7()
            half#(s(0())) -> c_8()
            half#(s(s(X))) -> c_9(half#(X))
            sqr#(0()) -> c_10()
            sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
            terms#(N) -> c_12(sqr#(N))
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/3,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,3,5,6,7,8,10}
        by application of
          Pre({1,3,5,6,7,8,10}) = {2,4,9,11,12}.
        Here rules are labelled as follows:
          1: add#(0(),X) -> c_1()
          2: add#(s(X),Y) -> c_2(add#(X,Y))
          3: dbl#(0()) -> c_3()
          4: dbl#(s(X)) -> c_4(dbl#(X))
          5: first#(0(),X) -> c_5()
          6: first#(s(X),cons(Y)) -> c_6()
          7: half#(0()) -> c_7()
          8: half#(s(0())) -> c_8()
          9: half#(s(s(X))) -> c_9(half#(X))
          10: sqr#(0()) -> c_10()
          11: sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
          12: terms#(N) -> c_12(sqr#(N))
* Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            add#(s(X),Y) -> c_2(add#(X,Y))
            dbl#(s(X)) -> c_4(dbl#(X))
            half#(s(s(X))) -> c_9(half#(X))
            sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
            terms#(N) -> c_12(sqr#(N))
        - Weak DPs:
            add#(0(),X) -> c_1()
            dbl#(0()) -> c_3()
            first#(0(),X) -> c_5()
            first#(s(X),cons(Y)) -> c_6()
            half#(0()) -> c_7()
            half#(s(0())) -> c_8()
            sqr#(0()) -> c_10()
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/3,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:add#(s(X),Y) -> c_2(add#(X,Y))
             -->_1 add#(0(),X) -> c_1():6
             -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1
          
          2:S:dbl#(s(X)) -> c_4(dbl#(X))
             -->_1 dbl#(0()) -> c_3():7
             -->_1 dbl#(s(X)) -> c_4(dbl#(X)):2
          
          3:S:half#(s(s(X))) -> c_9(half#(X))
             -->_1 half#(s(0())) -> c_8():11
             -->_1 half#(0()) -> c_7():10
             -->_1 half#(s(s(X))) -> c_9(half#(X)):3
          
          4:S:sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
             -->_2 sqr#(0()) -> c_10():12
             -->_3 dbl#(0()) -> c_3():7
             -->_1 add#(0(),X) -> c_1():6
             -->_2 sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):4
             -->_3 dbl#(s(X)) -> c_4(dbl#(X)):2
             -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1
          
          5:S:terms#(N) -> c_12(sqr#(N))
             -->_1 sqr#(0()) -> c_10():12
             -->_1 sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):4
          
          6:W:add#(0(),X) -> c_1()
             
          
          7:W:dbl#(0()) -> c_3()
             
          
          8:W:first#(0(),X) -> c_5()
             
          
          9:W:first#(s(X),cons(Y)) -> c_6()
             
          
          10:W:half#(0()) -> c_7()
             
          
          11:W:half#(s(0())) -> c_8()
             
          
          12:W:sqr#(0()) -> c_10()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          9: first#(s(X),cons(Y)) -> c_6()
          8: first#(0(),X) -> c_5()
          12: sqr#(0()) -> c_10()
          10: half#(0()) -> c_7()
          11: half#(s(0())) -> c_8()
          7: dbl#(0()) -> c_3()
          6: add#(0(),X) -> c_1()
* Step 5: RemoveHeads WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            add#(s(X),Y) -> c_2(add#(X,Y))
            dbl#(s(X)) -> c_4(dbl#(X))
            half#(s(s(X))) -> c_9(half#(X))
            sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
            terms#(N) -> c_12(sqr#(N))
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/3,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:add#(s(X),Y) -> c_2(add#(X,Y))
           -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1
        
        2:S:dbl#(s(X)) -> c_4(dbl#(X))
           -->_1 dbl#(s(X)) -> c_4(dbl#(X)):2
        
        3:S:half#(s(s(X))) -> c_9(half#(X))
           -->_1 half#(s(s(X))) -> c_9(half#(X)):3
        
        4:S:sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
           -->_2 sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):4
           -->_3 dbl#(s(X)) -> c_4(dbl#(X)):2
           -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1
        
        5:S:terms#(N) -> c_12(sqr#(N))
           -->_1 sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):4
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(5,terms#(N) -> c_12(sqr#(N)))]
* Step 6: Decompose WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            add#(s(X),Y) -> c_2(add#(X,Y))
            dbl#(s(X)) -> c_4(dbl#(X))
            half#(s(s(X))) -> c_9(half#(X))
            sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/3,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              add#(s(X),Y) -> c_2(add#(X,Y))
          - Weak DPs:
              dbl#(s(X)) -> c_4(dbl#(X))
              half#(s(s(X))) -> c_9(half#(X))
              sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
          - Weak TRS:
              add(0(),X) -> X
              add(s(X),Y) -> s(add(X,Y))
              dbl(0()) -> 0()
              dbl(s(X)) -> s(s(dbl(X)))
              sqr(0()) -> 0()
              sqr(s(X)) -> s(add(sqr(X),dbl(X)))
          - Signature:
              {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
              ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/3,c_12/1}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
              ,cons,nil,recip,s}
        
        Problem (S)
          - Strict DPs:
              dbl#(s(X)) -> c_4(dbl#(X))
              half#(s(s(X))) -> c_9(half#(X))
              sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
          - Weak DPs:
              add#(s(X),Y) -> c_2(add#(X,Y))
          - Weak TRS:
              add(0(),X) -> X
              add(s(X),Y) -> s(add(X,Y))
              dbl(0()) -> 0()
              dbl(s(X)) -> s(s(dbl(X)))
              sqr(0()) -> 0()
              sqr(s(X)) -> s(add(sqr(X),dbl(X)))
          - Signature:
              {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
              ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/3,c_12/1}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
              ,cons,nil,recip,s}
** Step 6.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            add#(s(X),Y) -> c_2(add#(X,Y))
        - Weak DPs:
            dbl#(s(X)) -> c_4(dbl#(X))
            half#(s(s(X))) -> c_9(half#(X))
            sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/3,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:add#(s(X),Y) -> c_2(add#(X,Y))
             -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1
          
          2:W:dbl#(s(X)) -> c_4(dbl#(X))
             -->_1 dbl#(s(X)) -> c_4(dbl#(X)):2
          
          3:W:half#(s(s(X))) -> c_9(half#(X))
             -->_1 half#(s(s(X))) -> c_9(half#(X)):3
          
          4:W:sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
             -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1
             -->_3 dbl#(s(X)) -> c_4(dbl#(X)):2
             -->_2 sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):4
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: half#(s(s(X))) -> c_9(half#(X))
          2: dbl#(s(X)) -> c_4(dbl#(X))
** Step 6.a:2: SimplifyRHS WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            add#(s(X),Y) -> c_2(add#(X,Y))
        - Weak DPs:
            sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/3,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:add#(s(X),Y) -> c_2(add#(X,Y))
             -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1
          
          4:W:sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
             -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1
             -->_2 sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):4
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X))
** Step 6.a:3: DecomposeDG WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            add#(s(X),Y) -> c_2(add#(X,Y))
        - Weak DPs:
            sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X))
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X))
        and a lower component
          add#(s(X),Y) -> c_2(add#(X,Y))
        Further, following extension rules are added to the lower component.
          sqr#(s(X)) -> add#(sqr(X),dbl(X))
          sqr#(s(X)) -> sqr#(X)
*** Step 6.a:3.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X))
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X))
          
        The strictly oriented rules are moved into the weak component.
**** Step 6.a:3.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X))
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_11) = {1,2}
        
        Following symbols are considered usable:
          {dbl,add#,dbl#,first#,half#,sqr#,terms#}
        TcT has computed the following interpretation:
               p(0) = [1]                  
             p(add) = [0]                  
            p(cons) = [1] x1 + [0]         
             p(dbl) = [8] x1 + [5]         
           p(first) = [2] x1 + [1] x2 + [0]
            p(half) = [0]                  
             p(nil) = [0]                  
           p(recip) = [0]                  
               p(s) = [1] x1 + [2]         
             p(sqr) = [8] x1 + [0]         
           p(terms) = [0]                  
            p(add#) = [1]                  
            p(dbl#) = [1] x1 + [0]         
          p(first#) = [1] x1 + [0]         
           p(half#) = [1] x1 + [0]         
            p(sqr#) = [4] x1 + [0]         
          p(terms#) = [1] x1 + [0]         
             p(c_1) = [0]                  
             p(c_2) = [8] x1 + [0]         
             p(c_3) = [0]                  
             p(c_4) = [2] x1 + [0]         
             p(c_5) = [0]                  
             p(c_6) = [0]                  
             p(c_7) = [0]                  
             p(c_8) = [0]                  
             p(c_9) = [1] x1 + [0]         
            p(c_10) = [0]                  
            p(c_11) = [4] x1 + [1] x2 + [2]
            p(c_12) = [0]                  
        
        Following rules are strictly oriented:
        sqr#(s(X)) = [4] X + [8]                      
                   > [4] X + [6]                      
                   = c_11(add#(sqr(X),dbl(X)),sqr#(X))
        
        
        Following rules are (at-least) weakly oriented:
         dbl(0()) =  [13]        
                  >= [1]         
                  =  0()         
        
        dbl(s(X)) =  [8] X + [21]
                  >= [8] X + [9] 
                  =  s(s(dbl(X)))
        
**** Step 6.a:3.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X))
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 6.a:3.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X))
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X))
             -->_2 sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X))
**** Step 6.a:3.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 6.a:3.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            add#(s(X),Y) -> c_2(add#(X,Y))
        - Weak DPs:
            sqr#(s(X)) -> add#(sqr(X),dbl(X))
            sqr#(s(X)) -> sqr#(X)
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: add#(s(X),Y) -> c_2(add#(X,Y))
          
        The strictly oriented rules are moved into the weak component.
**** Step 6.a:3.b:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            add#(s(X),Y) -> c_2(add#(X,Y))
        - Weak DPs:
            sqr#(s(X)) -> add#(sqr(X),dbl(X))
            sqr#(s(X)) -> sqr#(X)
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_2) = {1}
        
        Following symbols are considered usable:
          {add,dbl,sqr,add#,dbl#,first#,half#,sqr#,terms#}
        TcT has computed the following interpretation:
               p(0) = 0                               
             p(add) = 1 + x1 + 3*x2                   
            p(cons) = x1                              
             p(dbl) = 2*x1                            
           p(first) = 1 + x1 + 2*x1*x2 + x1^2 + 4*x2^2
            p(half) = 1                               
             p(nil) = 1                               
           p(recip) = 0                               
               p(s) = 1 + x1                          
             p(sqr) = 3*x1^2                          
           p(terms) = 4 + x1 + 4*x1^2                 
            p(add#) = 2 + 2*x1 + 2*x2                 
            p(dbl#) = x1                              
          p(first#) = x1 + x1*x2 + 4*x2 + x2^2        
           p(half#) = 1 + 4*x1                        
            p(sqr#) = 4 + 2*x1 + 6*x1^2               
          p(terms#) = x1 + 2*x1^2                     
             p(c_1) = 1                               
             p(c_2) = x1                              
             p(c_3) = 1                               
             p(c_4) = 1                               
             p(c_5) = 1                               
             p(c_6) = 0                               
             p(c_7) = 0                               
             p(c_8) = 0                               
             p(c_9) = x1                              
            p(c_10) = 0                               
            p(c_11) = 1 + x1                          
            p(c_12) = 1                               
        
        Following rules are strictly oriented:
        add#(s(X),Y) = 4 + 2*X + 2*Y 
                     > 2 + 2*X + 2*Y 
                     = c_2(add#(X,Y))
        
        
        Following rules are (at-least) weakly oriented:
         sqr#(s(X)) =  12 + 14*X + 6*X^2    
                    >= 2 + 4*X + 6*X^2      
                    =  add#(sqr(X),dbl(X))  
        
         sqr#(s(X)) =  12 + 14*X + 6*X^2    
                    >= 4 + 2*X + 6*X^2      
                    =  sqr#(X)              
        
         add(0(),X) =  1 + 3*X              
                    >= X                    
                    =  X                    
        
        add(s(X),Y) =  2 + X + 3*Y          
                    >= 2 + X + 3*Y          
                    =  s(add(X,Y))          
        
           dbl(0()) =  0                    
                    >= 0                    
                    =  0()                  
        
          dbl(s(X)) =  2 + 2*X              
                    >= 2 + 2*X              
                    =  s(s(dbl(X)))         
        
           sqr(0()) =  0                    
                    >= 0                    
                    =  0()                  
        
          sqr(s(X)) =  3 + 6*X + 3*X^2      
                    >= 2 + 6*X + 3*X^2      
                    =  s(add(sqr(X),dbl(X)))
        
**** Step 6.a:3.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            add#(s(X),Y) -> c_2(add#(X,Y))
            sqr#(s(X)) -> add#(sqr(X),dbl(X))
            sqr#(s(X)) -> sqr#(X)
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 6.a:3.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            add#(s(X),Y) -> c_2(add#(X,Y))
            sqr#(s(X)) -> add#(sqr(X),dbl(X))
            sqr#(s(X)) -> sqr#(X)
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:add#(s(X),Y) -> c_2(add#(X,Y))
             -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1
          
          2:W:sqr#(s(X)) -> add#(sqr(X),dbl(X))
             -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1
          
          3:W:sqr#(s(X)) -> sqr#(X)
             -->_1 sqr#(s(X)) -> sqr#(X):3
             -->_1 sqr#(s(X)) -> add#(sqr(X),dbl(X)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: sqr#(s(X)) -> sqr#(X)
          2: sqr#(s(X)) -> add#(sqr(X),dbl(X))
          1: add#(s(X),Y) -> c_2(add#(X,Y))
**** Step 6.a:3.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

** Step 6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            dbl#(s(X)) -> c_4(dbl#(X))
            half#(s(s(X))) -> c_9(half#(X))
            sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
        - Weak DPs:
            add#(s(X),Y) -> c_2(add#(X,Y))
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/3,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:dbl#(s(X)) -> c_4(dbl#(X))
             -->_1 dbl#(s(X)) -> c_4(dbl#(X)):1
          
          2:S:half#(s(s(X))) -> c_9(half#(X))
             -->_1 half#(s(s(X))) -> c_9(half#(X)):2
          
          3:S:sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
             -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):4
             -->_2 sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):3
             -->_3 dbl#(s(X)) -> c_4(dbl#(X)):1
          
          4:W:add#(s(X),Y) -> c_2(add#(X,Y))
             -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):4
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          4: add#(s(X),Y) -> c_2(add#(X,Y))
** Step 6.b:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            dbl#(s(X)) -> c_4(dbl#(X))
            half#(s(s(X))) -> c_9(half#(X))
            sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/3,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:dbl#(s(X)) -> c_4(dbl#(X))
             -->_1 dbl#(s(X)) -> c_4(dbl#(X)):1
          
          2:S:half#(s(s(X))) -> c_9(half#(X))
             -->_1 half#(s(s(X))) -> c_9(half#(X)):2
          
          3:S:sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
             -->_2 sqr#(s(X)) -> c_11(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):3
             -->_3 dbl#(s(X)) -> c_4(dbl#(X)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          sqr#(s(X)) -> c_11(sqr#(X),dbl#(X))
** Step 6.b:3: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            dbl#(s(X)) -> c_4(dbl#(X))
            half#(s(s(X))) -> c_9(half#(X))
            sqr#(s(X)) -> c_11(sqr#(X),dbl#(X))
        - Weak TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          dbl#(s(X)) -> c_4(dbl#(X))
          half#(s(s(X))) -> c_9(half#(X))
          sqr#(s(X)) -> c_11(sqr#(X),dbl#(X))
** Step 6.b:4: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            dbl#(s(X)) -> c_4(dbl#(X))
            half#(s(s(X))) -> c_9(half#(X))
            sqr#(s(X)) -> c_11(sqr#(X),dbl#(X))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              dbl#(s(X)) -> c_4(dbl#(X))
          - Weak DPs:
              half#(s(s(X))) -> c_9(half#(X))
              sqr#(s(X)) -> c_11(sqr#(X),dbl#(X))
          - Signature:
              {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
              ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
              ,cons,nil,recip,s}
        
        Problem (S)
          - Strict DPs:
              half#(s(s(X))) -> c_9(half#(X))
              sqr#(s(X)) -> c_11(sqr#(X),dbl#(X))
          - Weak DPs:
              dbl#(s(X)) -> c_4(dbl#(X))
          - Signature:
              {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
              ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
              ,cons,nil,recip,s}
*** Step 6.b:4.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            dbl#(s(X)) -> c_4(dbl#(X))
        - Weak DPs:
            half#(s(s(X))) -> c_9(half#(X))
            sqr#(s(X)) -> c_11(sqr#(X),dbl#(X))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:dbl#(s(X)) -> c_4(dbl#(X))
             -->_1 dbl#(s(X)) -> c_4(dbl#(X)):1
          
          2:W:half#(s(s(X))) -> c_9(half#(X))
             -->_1 half#(s(s(X))) -> c_9(half#(X)):2
          
          3:W:sqr#(s(X)) -> c_11(sqr#(X),dbl#(X))
             -->_2 dbl#(s(X)) -> c_4(dbl#(X)):1
             -->_1 sqr#(s(X)) -> c_11(sqr#(X),dbl#(X)):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: half#(s(s(X))) -> c_9(half#(X))
*** Step 6.b:4.a:2: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            dbl#(s(X)) -> c_4(dbl#(X))
        - Weak DPs:
            sqr#(s(X)) -> c_11(sqr#(X),dbl#(X))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: dbl#(s(X)) -> c_4(dbl#(X))
          
        The strictly oriented rules are moved into the weak component.
**** Step 6.b:4.a:2.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            dbl#(s(X)) -> c_4(dbl#(X))
        - Weak DPs:
            sqr#(s(X)) -> c_11(sqr#(X),dbl#(X))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_4) = {1},
          uargs(c_11) = {1,2}
        
        Following symbols are considered usable:
          {add#,dbl#,first#,half#,sqr#,terms#}
        TcT has computed the following interpretation:
               p(0) = 1                          
             p(add) = x1*x2 + x1^2 + 2*x2^2      
            p(cons) = x1                         
             p(dbl) = x1 + x1^2                  
           p(first) = 1 + x1 + x2 + x2^2         
            p(half) = 8 + 2*x1 + x1^2            
             p(nil) = 0                          
           p(recip) = 1                          
               p(s) = 1 + x1                     
             p(sqr) = 4 + 8*x1^2                 
           p(terms) = x1                         
            p(add#) = 1 + 2*x1 + 8*x1*x2         
            p(dbl#) = 8 + 2*x1                   
          p(first#) = 1 + x1 + x1^2 + 2*x2 + x2^2
           p(half#) = 1 + x1                     
            p(sqr#) = 5 + x1 + 12*x1^2           
          p(terms#) = 0                          
             p(c_1) = 0                          
             p(c_2) = 1                          
             p(c_3) = 1                          
             p(c_4) = x1                         
             p(c_5) = 1                          
             p(c_6) = 0                          
             p(c_7) = 0                          
             p(c_8) = 0                          
             p(c_9) = 0                          
            p(c_10) = 0                          
            p(c_11) = x1 + x2                    
            p(c_12) = 1                          
        
        Following rules are strictly oriented:
        dbl#(s(X)) = 10 + 2*X    
                   > 8 + 2*X     
                   = c_4(dbl#(X))
        
        
        Following rules are (at-least) weakly oriented:
        sqr#(s(X)) =  18 + 25*X + 12*X^2   
                   >= 13 + 3*X + 12*X^2    
                   =  c_11(sqr#(X),dbl#(X))
        
**** Step 6.b:4.a:2.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            dbl#(s(X)) -> c_4(dbl#(X))
            sqr#(s(X)) -> c_11(sqr#(X),dbl#(X))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 6.b:4.a:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            dbl#(s(X)) -> c_4(dbl#(X))
            sqr#(s(X)) -> c_11(sqr#(X),dbl#(X))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:dbl#(s(X)) -> c_4(dbl#(X))
             -->_1 dbl#(s(X)) -> c_4(dbl#(X)):1
          
          2:W:sqr#(s(X)) -> c_11(sqr#(X),dbl#(X))
             -->_1 sqr#(s(X)) -> c_11(sqr#(X),dbl#(X)):2
             -->_2 dbl#(s(X)) -> c_4(dbl#(X)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: sqr#(s(X)) -> c_11(sqr#(X),dbl#(X))
          1: dbl#(s(X)) -> c_4(dbl#(X))
**** Step 6.b:4.a:2.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 6.b:4.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            half#(s(s(X))) -> c_9(half#(X))
            sqr#(s(X)) -> c_11(sqr#(X),dbl#(X))
        - Weak DPs:
            dbl#(s(X)) -> c_4(dbl#(X))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:half#(s(s(X))) -> c_9(half#(X))
             -->_1 half#(s(s(X))) -> c_9(half#(X)):1
          
          2:S:sqr#(s(X)) -> c_11(sqr#(X),dbl#(X))
             -->_2 dbl#(s(X)) -> c_4(dbl#(X)):3
             -->_1 sqr#(s(X)) -> c_11(sqr#(X),dbl#(X)):2
          
          3:W:dbl#(s(X)) -> c_4(dbl#(X))
             -->_1 dbl#(s(X)) -> c_4(dbl#(X)):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: dbl#(s(X)) -> c_4(dbl#(X))
*** Step 6.b:4.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            half#(s(s(X))) -> c_9(half#(X))
            sqr#(s(X)) -> c_11(sqr#(X),dbl#(X))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:half#(s(s(X))) -> c_9(half#(X))
             -->_1 half#(s(s(X))) -> c_9(half#(X)):1
          
          2:S:sqr#(s(X)) -> c_11(sqr#(X),dbl#(X))
             -->_1 sqr#(s(X)) -> c_11(sqr#(X),dbl#(X)):2
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          sqr#(s(X)) -> c_11(sqr#(X))
*** Step 6.b:4.b:3: Decompose WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            half#(s(s(X))) -> c_9(half#(X))
            sqr#(s(X)) -> c_11(sqr#(X))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              half#(s(s(X))) -> c_9(half#(X))
          - Weak DPs:
              sqr#(s(X)) -> c_11(sqr#(X))
          - Signature:
              {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
              ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
              ,cons,nil,recip,s}
        
        Problem (S)
          - Strict DPs:
              sqr#(s(X)) -> c_11(sqr#(X))
          - Weak DPs:
              half#(s(s(X))) -> c_9(half#(X))
          - Signature:
              {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
              ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
              ,cons,nil,recip,s}
**** Step 6.b:4.b:3.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            half#(s(s(X))) -> c_9(half#(X))
        - Weak DPs:
            sqr#(s(X)) -> c_11(sqr#(X))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:half#(s(s(X))) -> c_9(half#(X))
             -->_1 half#(s(s(X))) -> c_9(half#(X)):1
          
          2:W:sqr#(s(X)) -> c_11(sqr#(X))
             -->_1 sqr#(s(X)) -> c_11(sqr#(X)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: sqr#(s(X)) -> c_11(sqr#(X))
**** Step 6.b:4.b:3.a:2: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            half#(s(s(X))) -> c_9(half#(X))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: half#(s(s(X))) -> c_9(half#(X))
          
        The strictly oriented rules are moved into the weak component.
***** Step 6.b:4.b:3.a:2.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            half#(s(s(X))) -> c_9(half#(X))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_9) = {1}
        
        Following symbols are considered usable:
          {add#,dbl#,first#,half#,sqr#,terms#}
        TcT has computed the following interpretation:
               p(0) = [2]                  
             p(add) = [8] x1 + [1]         
            p(cons) = [1] x1 + [0]         
             p(dbl) = [2] x1 + [0]         
           p(first) = [1] x1 + [0]         
            p(half) = [4]                  
             p(nil) = [1]                  
           p(recip) = [0]                  
               p(s) = [1] x1 + [1]         
             p(sqr) = [1] x1 + [0]         
           p(terms) = [1] x1 + [0]         
            p(add#) = [1] x1 + [0]         
            p(dbl#) = [1] x1 + [2]         
          p(first#) = [4] x1 + [1] x2 + [0]
           p(half#) = [4] x1 + [1]         
            p(sqr#) = [0]                  
          p(terms#) = [1] x1 + [0]         
             p(c_1) = [1]                  
             p(c_2) = [4] x1 + [0]         
             p(c_3) = [1]                  
             p(c_4) = [2]                  
             p(c_5) = [1]                  
             p(c_6) = [1]                  
             p(c_7) = [2]                  
             p(c_8) = [1]                  
             p(c_9) = [1] x1 + [6]         
            p(c_10) = [0]                  
            p(c_11) = [8] x1 + [1]         
            p(c_12) = [1]                  
        
        Following rules are strictly oriented:
        half#(s(s(X))) = [4] X + [9]  
                       > [4] X + [7]  
                       = c_9(half#(X))
        
        
        Following rules are (at-least) weakly oriented:
        
***** Step 6.b:4.b:3.a:2.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            half#(s(s(X))) -> c_9(half#(X))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 6.b:4.b:3.a:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            half#(s(s(X))) -> c_9(half#(X))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:half#(s(s(X))) -> c_9(half#(X))
             -->_1 half#(s(s(X))) -> c_9(half#(X)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: half#(s(s(X))) -> c_9(half#(X))
***** Step 6.b:4.b:3.a:2.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

**** Step 6.b:4.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            sqr#(s(X)) -> c_11(sqr#(X))
        - Weak DPs:
            half#(s(s(X))) -> c_9(half#(X))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:sqr#(s(X)) -> c_11(sqr#(X))
             -->_1 sqr#(s(X)) -> c_11(sqr#(X)):1
          
          2:W:half#(s(s(X))) -> c_9(half#(X))
             -->_1 half#(s(s(X))) -> c_9(half#(X)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: half#(s(s(X))) -> c_9(half#(X))
**** Step 6.b:4.b:3.b:2: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            sqr#(s(X)) -> c_11(sqr#(X))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: sqr#(s(X)) -> c_11(sqr#(X))
          
        The strictly oriented rules are moved into the weak component.
***** Step 6.b:4.b:3.b:2.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            sqr#(s(X)) -> c_11(sqr#(X))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_11) = {1}
        
        Following symbols are considered usable:
          {add#,dbl#,first#,half#,sqr#,terms#}
        TcT has computed the following interpretation:
               p(0) = [0]          
             p(add) = [0]          
            p(cons) = [1] x1 + [0] 
             p(dbl) = [8] x1 + [0] 
           p(first) = [4] x2 + [1] 
            p(half) = [1]          
             p(nil) = [1]          
           p(recip) = [1]          
               p(s) = [1] x1 + [7] 
             p(sqr) = [1] x1 + [0] 
           p(terms) = [1]          
            p(add#) = [1] x1 + [8] 
            p(dbl#) = [2]          
          p(first#) = [0]          
           p(half#) = [0]          
            p(sqr#) = [4] x1 + [1] 
          p(terms#) = [2] x1 + [1] 
             p(c_1) = [0]          
             p(c_2) = [1]          
             p(c_3) = [1]          
             p(c_4) = [1] x1 + [0] 
             p(c_5) = [1]          
             p(c_6) = [0]          
             p(c_7) = [4]          
             p(c_8) = [0]          
             p(c_9) = [4] x1 + [1] 
            p(c_10) = [8]          
            p(c_11) = [1] x1 + [14]
            p(c_12) = [2] x1 + [4] 
        
        Following rules are strictly oriented:
        sqr#(s(X)) = [4] X + [29] 
                   > [4] X + [15] 
                   = c_11(sqr#(X))
        
        
        Following rules are (at-least) weakly oriented:
        
***** Step 6.b:4.b:3.b:2.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            sqr#(s(X)) -> c_11(sqr#(X))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 6.b:4.b:3.b:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            sqr#(s(X)) -> c_11(sqr#(X))
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:sqr#(s(X)) -> c_11(sqr#(X))
             -->_1 sqr#(s(X)) -> c_11(sqr#(X)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: sqr#(s(X)) -> c_11(sqr#(X))
***** Step 6.b:4.b:3.b:2.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {add/2,dbl/1,first/2,half/1,sqr/1,terms/1,add#/2,dbl#/1,first#/2,half#/1,sqr#/1,terms#/1} / {0/0,cons/1
            ,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,half#,sqr#,terms#} and constructors {0
            ,cons,nil,recip,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^3))